PMR LINE-BROADENING OBSERVATION OF A SWINGING AND OF A PSEUDOROTATORY CONFORMATIONAL INTERCHANGE IN AN OCTANO-BRIDGED OXA-OUADRICYCLANE.

H. Hogeveen and B.J. Nusse

Department of Organic Chemistry, The University,

Zernikelaan, Groningen, The Netherlands

(Received in UK 20 November 1975; accepted for publication 23 January 1976)

Our interest in the mechanism of metal- and acid catalyzed reactions of oxa-quadricyclanes has brought us to a 3-oxa-quadricyclane in which the oxygen atom is shielded by a methylene chain of 8 C-atoms. For this purpose we synthesized¹ 2,4-octano-.,5-dicarbomethoxy-3-oxa-quadricyclane (<u>1</u>) by intramolecular photocyclization of the corresponding oxa-norbornadiene (<u>2</u>).² In the present communication we report the results of a PMR spectroscopic investigation of compound <u>1</u>, which shows the existence of two conformational interchanges of the octano-bridge.

At +35[°]C the PMR spectrum of <u>1</u> consists of two singlets at δ 3.66 (6H) and δ 2.55 (2H) - arising from the ester hydrogens and the tertiary hydrogens respectively - and three multiplets at δ 1.95-2.10 (4H), δ 1.45-1.84 (8H) and δ 1.19-1.45 (4H) - due to the octano-chain hydrogens. The signal at δ 2.55 has

Figure 1. 100 MHz PMR recordings of the twohydrogen signal at δ 2.55 of <u>1</u> in CS₂ at various temperatures (Sweep width 500 cps)

Figure 2. 100 MHz PMR signal of 1 centered around δ 2.55 at $-103^{\circ}C$ and the simulated AB pattern (Sweep width cps) 100 cps)

been recorded at various temperatures as shown in Figure 1.³ As one observes, at -52° C there is still one sharp signal, which at lower temperatures starts to broaden. Coalescence occurs at -70° C and at -74° C two singlets are observed at δ 2.59 and δ 2.52. The free-enthalpy of activation at the coalescence temperature is estimated⁴ to be $G_{203}^{\ddagger} = 10.6$ kcal/mole. Upon further lowering of the temperature the low-field singlet at δ 2.59 remains sharp, whereas the high-field singlet at δ 2.52 becomes broader, (see Figure 1, -84° C) which indicates, that another line-broadening process is starting to operate. At -94° C the signal split up. Expansion of the spectrum at -103° C shows that an AB pattern is present (see Figure 2). The chemical shift difference between A and B is 6.6 Hz and the coupling constant J_{AB} is 2.6 Hz.⁵ At the coalescence temperature (-90° C) the free-enthalpy of activation is estimated⁴ to be $G_{183}^{\ddagger} = 9.4$ kcal/mole.

The first line-broadening process is ascribed to a swinging of the polymethylene chain over the oxygen atom as depicted in Figure 3. In the literature, examples of such processes have been

reported previously for a furanophane,^{6a} for [n](1,3)-cyclophanes^{6b,c} and for the oxa-norbornadiene 2 (E=CN).^{2a} At temperatures below -70°C the two conformers I and II interchange so slowly, that they are observed separately in the PMR spectrum of compound <u>1</u>, since the two equivalent hydrogens H₁ in I are different from the two equivalent hydrogens H₁['] in II. The fact that the observed signals at δ 2.52 and δ 2.59 are of almost equal intensity indicates that there is hardly any steric interaction between the octano-ring hydrogens and the ester-substituents.

The second line-broadening process, which leads to the AB pattern centered around δ 2.52, is ascribed to a conformational change by a pseudorotatory process in I, which is shown in Figure 4.⁷ The conformational change is believed to proceed as follows: starting from III, H'_a moves downwards along the oxygen atom, whereas H'_a moves in the opposite direction, to reach IV, in which the original positions of H'_a and H'_a (and, of course, also the positions of H'_b and H'_b) have been interchanged. This

pseudorotation involves the eight carbon atoms of the octano-bridge and is likely to interconvert a cyclohexane ring fragment (chair form) and a cyclopentane ring fragment (puckered) in the way depicted in Figure 4. ⁸ At sufficiently low temperatures ($<-90^{\circ}$ C) this pseudorotation is slow enough to allow conformers III and IV to be observed separately, as evidenced by H₁ being no longer equivalent to H₂. There are a number of factors which are likely to contribute to the energy barrier of the pseudorotation. Firstly there is a transannular effect in the 11-membered ring between the C-O-C fragment and the hydrogens at C₃, C₄, C₅ and C₆. In the pseudorotation process the hydrogens H_a and H_a' interfere with the C-O bonds. In addition, in the transition state there is an appreciable steric repulsion between the hydrogens of carbon atoms 3 and 6 and the oxygen atom (see Figure 5). Secondly, during the pseudorotation C-C and C-H eclipsing occurs in the octano-bridge (see Figure 5). The observation, that in the oxa-norbornadiene <u>2</u> (E=CN) the energy-barrier of

 ∇

Figure 5. Transition state of the pseudorotation, showing the steric interaction between oxygen and two hydrogens at C_3 and C_6 , and the eclipsing $C_3^{-}C_4^{-}$ and $C_5^{-}C_6^{-}$ bonds.

pseudorotation is smaller than that in <u>1</u> (even at -100° C there is no line-broadening due to pseudorotation^{2a}), can be explained by the fact that the octano-bridge in compound <u>2</u> is less strained than that in compound 1 as shown by Dreiding molecular models.

Acknowledgement.

The authors wish to thank Dr. J.H. Wieringa for recording the XL-100 PMR-spectra and Drs. R. Helder, L.A. Paquette and H. Wynberg for helpful discussions. This work was supported by the Netherlands Foundation for Chemical Research (SON).

References and Notes.

- 1. The reactivity of <u>1</u> towards acid and metal complexes will be described elsewhere; manuscript in preparation.
- 2. a. R. Helder and H. Wynberg, Tetrahedron Lett., <u>1973</u>, 4321; b. H. Hogeveen and T.B. Middelkoop, ibid., 1973, 4325.
- 3. No definite conclusions from the signals due to the octano-bridge hydrogens can be drawn about the described processes.
- 4. Values for k coal. of the two processes were estimated by applying the following simplified formules: k coal. = πδυ/√2 (process I ≓ II) and k coal. = π√ (v_A-v_B)² + 6J_{AB}²/√2 (process III ≓ IV) From these values the ΔG[‡] parameters were calculated using the formula: ΔG[‡] = 4.57 T coal. [10.32 log k coal./T coal.]. H. Günther, "NMR-Spektroskopie", Georg Thieme Verlag, Stuttgart, 1973, p. 240.

- 5. A similar coupling constant (J = 2.8 Hz) is found for 2-methyl-1,5-dicarbomethoxy-3-oxaquadricyclane. H. Prinzbach, P. Vogel and W. Auge, Chimia 21, 469 (1967).
- 6. a. H. Nozaki, T. Koyama and T. Mori, Tetrahedron <u>25</u>, 5357 (1969); b. S. Hirano, H. Hara,
 T. Hiyama, S. Fujita and H. Nozaki, ibid., <u>31</u>, 2219 (1975), Tetrahedron Lett., <u>1972</u>, 403 and
 Chem. Lett., <u>1972</u>, 707; c. F. Vögtle, Tetrahedron 25, 3231 (1969).
- 7. An analogously degenerate conformational interchange will supposedly occur in conformer II, but this change cannot be detected by the PMR signal at δ 2.59. This process can possibly be observed by CMR-spectroscopy.
- A pseudorotation process has been used by Nozaki et al. to explain the temperature-dependent PMR-spectrum of [6](1,3)-cyclophane.^{6b}
- 9. We feel that these factors can also explain the difference between the temperature-dependent PMR-spectra of the furanophane $\underline{3}$ and thiophenophane $\underline{4}$, as reported by Nozaki et al.^{6a} They

observed a one-hydrogen signal at $\delta -1.5 \text{ at} -100^{\circ}\text{C}$ in the case of compound $\underline{4}$, whereas, at the same temperature, in the case of compound $\underline{3}$, a two hydrogen signal at δ 0.0 was observed. This indicates that the energy-barrier of pseudorotation in compound $\underline{4}$ is much higher than that in compound $\underline{3}$. In this case the larger Van der Waals radius of sulphur compared to that of oxygen (1.85 and 1.40 Å respectively)¹⁰ and the combined

effects of different bond-lengths and bond-angles ($C^{-S} \subset 92^{\circ}$; $C^{-\circ} \subset 106^{\circ}$; C-S 1.71 Å; C-O 1.36 Å)¹¹ may contribute to the factors mentioned in the pseudorotation III \rightleftharpoons IV. 10. Handbook of Chemistry and Physics, 45th edition, 1964-1965. D-90.

11. & B.Bak, D. Christensen, L. Hansen-Nygaard and I. Rastrup-Anderson, J. Mol. Spectry., 7 58 (1961) (thiophene) b. ibid., 9, 124 (1962) (furan).